Yayınlanmış 31.03.2024

Anahtar Kelimeler

  • Fintech,
  • Resource Efficiency,
  • Ecological Footprint,
  • MMQR Quantile Regression
  • Fintek,
  • Kaynak Verimliliği,
  • Ekolojik Ayak İzi,
  • MMQR Kantil Regresyon

Nasıl Atıf Yapılır

Finansal Teknolojilerin Kaynak Verimliliği Perspektifinde Ekolojik Sürdürülebilirliğe Etkileri: G20 Ülkelerinden Ampirik Kanıtlar. (2024). Elegest Elegeş, 4(1), 45-47. https://doi.org/10.64360/xjjmw230

Nasıl Atıf Yapılır

Finansal Teknolojilerin Kaynak Verimliliği Perspektifinde Ekolojik Sürdürülebilirliğe Etkileri: G20 Ülkelerinden Ampirik Kanıtlar. (2024). Elegest Elegeş, 4(1), 45-47. https://doi.org/10.64360/xjjmw230

Öz

Ekonomik faaliyetlerin neden olduğu ekolojik kaygı tüm dünyanın ortak sorunudur. İnsani gelişme yanında sürdürülebilir çevre de sürdürülebilir kalkınma hedeflerindendir. Çevreyle ilgili kaygılar finansal yönetim ile teknolojiyi bir araya getirmiş ve dijital dönüşüm yaratmıştır. Hızla yaygınlaşan finansal teknolojiler (fintek) sürdürülebilir kalkınmanın temel dinamiklerinden biri haline gelmiştir. Bu çalışma 19 G20 üyesi ülkeye yönelik fintek ile ekolojik bozulma arasındaki bağlantıyı kaynak verimliliği perspektifinde anlamaya odaklanmıştır. Bu doğrultuda kantil regresyon ve dinamik regresyon modellerinden yararlanılmıştır.  Kantiller arasındaki marjinal etkileri ölçebilen MMQR ile elde edilen sonuçların sağlamlık kontrollerinde dinamik etkileri ölçebilen Sistem-GMM tahmincisi kullanılmıştır. Elde edilen bulgular G20 ülkelerinde fintekin kaynak verimliliği kanalıyla ekolojik açıkları anlamlı bir şekilde giderdiğine işaret etmektedir. Ayrıca bu ülkelerdeki hızlı gelir artışı ve ticaret ekolojik ayak izini artırarak çevre tahribatına neden olmaktaktadır. Bu bulgular ışığında G20 ülkelerinin dijital dönüşüme entegrasyonu ekolojik kaygılardan kurtulmanın anahtarı gibi görülmektedir. Ekonomik ilerleme ve ticarete entegre edilen fintek yeşil finansman desteğiyle kaynak verimliliği perspektifinde sürdürülebilir bir ekolojinin kilidini açacaktır.

Referanslar

  1. Alam, M. M., Murad, M. W., Noman, A. H. M., & Ozturk, I. (2016). Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecological Indicators, 70, 466-479.
  2. Alola, A. A., Akadiri, S. S., & Usman, O. (2021). Domestic material consumption and greenhouse gas emissions in the EU-28 countries: Implications for environmental sustainability targets. Sustainable Development, 29(2), 388-397. https://doi.org/10.1002/sd.2154
  3. Alola, A. A., & Adebayo, T. S. (2022). Are green resource productivity and environmental technologies the face of environmental sustainability in the Nordic region?. Sustainable Development, 31, 760-772.
  4. Alola, A. A., & Adebayo, T. S. (2023). The potency of resource efficiency and environmental technologies in carbon neutrality target for Finland. Journal of Cleaner Production, 389, 136127.
  5. An, H., Razzaq, A., Haseeb, M., & Mihardjo, L. W. (2021). The role of technology innovation and people’s connectivity in testing environmental Kuznets curve and pollution heaven hypotheses across the Belt and Road host countries: New evidence from method of moments quantile regression. Environmental Science and Pollution Research, 28, 5254-5270.
  6. Arellano, M. & Bond, S. (1991). Some tests of specification for panel data: Monte Carlo evidence and an application to employment equations. The Review of Economic Studies, 58(2), 277-297.
  7. Arellano, M. & Bover, O. (1995). Another look at the instrumental variable estimation of error- components models. Journal of Econometrics, 68(1), 29-51. https://doi.org/10.1016/0304-
  8. 4076(94)01642-D
  9. Awan, A., Abbasi, K. R., Rej, S., Bandyopadhyay, A., & Lv, K. (2022). The impact of renewable energy, internet use and foreign direct investment on carbon dioxide emissions: A method of moments quantile
  10. analysis. Renewable Energy, 189, 454-466.
  11. Baloch, M.A., Zhang, J., Iqbal, K., & Iqbal, Z. (2019). The effect of financial development on ecological footprint in BRI countries: Evidence from panel data estimation. Environ. Sci. Pollut. Res., 26, 6199-6208.
  12. Baltagi, B. H. (2005). Econometric analysis of panel data. 3rd Edition, John Wiley & Sons Inc., New York.
  13. Baniya, B., & Aryal, P. P. (2022). Nepal's domestic material consumption— Projection and causal impact of external financial inflows, services value-added, population, and economic growth. Environmental Science and Pollution Research, 29(22), 33674-33697. ttps://doi.org/10. 1007/s11356-021-18050- 9
  14. Bayram, O., Talay, I., & Feridun, M. (2022). Can FinTech promote sustainable finance? Policy lessons from the case of Turkey. Sustainability, 14(19), 12414.
  15. Binder, M., & Coad, A. (2011). From Average Joe’s happiness to Miserable Jane and Cheerful John: Using quantile regressions to analyze the full subjective well-being distribution. Journal of Economic Behavior & Organization, 79(3), 27590. https://doi.org/10.1016/j.jebo.2011.02.005.
  16. Blundell, R. & Bond, S. (1998). Initial conditions and moment restrictions in dynamic panel data models. Journal of Econometrics, 87(1), 115-43. https://doi.org/10.1016/S0304-4076(98)00009-8
  17. Costantini, V., Crespi, F., Marin, G., & Paglialunga, E. (2017). Eco-innovation, sustainable supply chains and environmental performance in European industries. Journal of Cleaner Production, 155, 141-154.
  18. Chueca Vergara, C., & Ferruz Agudo, L. (2021). Fintek and sustainability: Do they affect each other?. Sustainability, 13(13), 7012. https://doi.org/10.3390/su13137012
  19. Destek, M. A., & Sarkodie, S. A. (2019). Investigation of environmental Kuznets curve for ecological footprint: The role of energy and financial development. Science of the Total Environment, 650, 2483-2489.
  20. Du, K., Li, P., & Yan, Z. (2019). Do green technology innovations contribute to carbon dioxide emission reduction? Empirical evidence from patent data. Technol. Forecast. Soc. Chang. 146, 297-303. doi:10.1016/j.techfore.2019.06.010
  21. Fan, Y., Liu, L. C., Wu, G., & Wei, Y. M. (2006). Analyzing impact factors of CO2 emissions using the STIRPAT model. Environmental Impact Assessment Review, 26(4), 377-395.
  22. Hassan, S. T., Baloch, M. A., Mahmood, N., & Zhang, J. (2019). Linking economic growth and ecological footprint through human capital and biocapacity. Sustainable Cities and Society, 47, 101516.
  23. Hao, Y., & Chen, P. (2023). Do renewable energy consumption and green innovation help to curb CO2 emissions? Evidence from E7 countries. Environmental Science and Pollution Research, 30 (8), 21115-21131.
  24. Huang, Y., Rahman, S. U., Meo, M. S., Ali, M. S. E., & Khan, S. (2024). Revisiting the environmental Kuznets curve: assessing the impact of climate policy uncertainty in the Belt and Road Initiative. Environmental Science and Pollution Research, 1-15.
  25. Kirikkaleli, D. & Adebayo, T. S. (2020). Do renewable energy consumption and financial development matter for environmental sustainability? New global evidence. Sustainable Development, 29(4), 583-594.
  26. https://doi.org/10.1002/sd.2159.
  27. Li, G., Zakari, A., & Tawiah, V., (2020). Energy resource melioration and CO2 emissions in China and Nigeria: Efficiency and trade perspectives. Resources Policy, 68, 101769.
  28. Muganyi, T., Yan, L., & Sun, H. P. (2021). Green finance, fintek and environmental protection: Evidence from China. Environ. Sci. Ecotechnol. 7, 100-107.
  29. Murshed, M. (2024). The role of Fintech financing in correcting ecological problems caused by mineral resources: Testing the novel cological deficit hypothesis. Resources Policy, 88, 104439.
  30. Plank, B., Eisenmenger, N., & Schaffartzik, A. (2021). Do material efficiency improvements backfire?: insights from an index ecomposition analysis about the link between CO2 emissions and material use for Austria. J. Ind. Ecol. 25 (2), 511-522.
  31. Przychodzen, W., Leyva-de la Hiz, D., & Przychodzen, J. (2020). First-mover advantages in green innovation-Opportunities and threats for financial performance: A longitudinal analysis.
  32. Corporate Social Responsibility and Environmental Management, 27 (1), 339-357. doi:10.1002/csr.1809.
  33. Roodman, D. (2009). How to do xtabond2: An introduction to difference and system GMM in Stata. The Stata Journal, 9(1), 86-136.
  34. Sargan, J. D. (1958). The estimation of economic relationships using instrumental variables. Econometrica, 26 (3), 393-415.
  35. Tamazian, A., Chousa, J. P., & Vadlamannati, K. C. (2009). Does higher economic and financial development lead to environmental degradation: Evidence from BRIC countries. Energy Policy, 37(1), 246-253.
  36. Tao, R., Su, C. W., Naqvi, B., & Rizvi, S. K. A. (2022). Can fintech development pave the way for a transition towards low-carbon economy: A global perspective. Technological Forecasting and Social Change, 174, 121278.
  37. Udeagha, M. C., & Ngepah, N. (2022). Disaggregating the environmental effects of renewable and non-renewable energy consumption in South Africa: Fresh evidence from the novel dynamic ARDL simulations approach. Econ Change and Restructuring, 55(3), 1767-1814. doi:https://doi.org/10.1007/s10644-021-09368-y.
  38. Udeagha, M. C., & Muchapondwa, E. (2023). Achieving regional sustainability and carbon neutrality target in BRICS economies: Understanding the importance of fiscal decentralization, export diversification and environmental innovation. Sustain. Dev. 31, 2620-2635, https://doi.org/10.1002/sd.2535.
  39. Udeagha, M. C. & Ngepah, N. (2023). The drivers of environmental sustainability in BRICS economies: Do green finance and fintech matter?. World Development Sustainability, 3, 100096.
  40. Usman, O., Alola, A. A., & Akadiri, S. S. (2022). Effects of domestic material consumption, renewable energy, and financial development on environmental sustainability in the EU-28: Evidence from a GMM panel VAR. Renewable Energy, 184, 239-251. ttps://doi.org/10.1016/j.renene.2021.11.086
  41. Xie, X. M., Hoang, T. T., & Zhu, Q. W. (2022). Green process innovation and financial performance: The role of green social capital and customers’ tacit green needs. Journal of Innovation & Knowledge, 7(1). doi:10.1016/j.jik.2022.100165 Article 100162.
  42. Yang, Y., Su, X., & Yao, S. (2021). Nexus between green finance, fintek, and high-quality economic development: Empirical evidence from China. Resources Policy, 74, 102445
  43. Yasmeen, H., Tan, Q., Zameer, H., Vo, X.V., & Shahbaz, M. (2021). Discovering the relationship between natural resources, energy consumption, gross capital formation with economic growth: Can lower financial openness change the curse into blessing. Resources Policy, 71, 102013.
  44. Yuan, B., Li, C., Yin, H., & Zeng, M. (2022). Green innovation and China’s CO2 emissions-the moderating effect of institutional quality. J. Environ. Plan. Manag. 65, 877-906. doi:10.1080/09640568.2021.1915260
  45. Zhang, Z., Zhou, Z., Zeng, Z., & Zou, Y. (2023). How does heterogeneous green technology innovation affect air quality and economic development in Chinese cities? Spatial and nonlinear perspective analysis. Journal of Innovation & Knowledge, 8, 100419.
  46. Zheng, L., Yuan, L., Khan, Z., Badeeb, R. A., & Zhang, L. (2023). How G-7 countries are paving the way for net-zero emissions through energy efficient ecosystem?. Energy Economics, 117, 106428.